
On the Construction of Human-Automation Interfaces
by Formal Abstraction

Michael Heymann1, and Asaf Degani 2

1 Department of Computer ScienceTechnion, Israel Institute of Technology
heymann@cs.technion.ac.il

2 NASA Ames Research Center, California
adegani@mail.arc.nasa.gov

Abstract. In this paper we address the problem of designing systems for
human-automation interaction that insure satisfaction of a wide range of
performance requirements (such as guaranteeing the safety and liveness of
mission critical operations). Our approach is based on formal procedures that
focus on the information provided to the user. We propose a formal
methodology for constructing interfaces and corresponding user- manuals that
is based on performing a systematic abstraction of the behavioral model of the
system. The procedure is aimed at achieving two objectives: First, the interface
must be correct in that with the given interface the user will be able to perform
the specified tasks correctly. Secondly, the interface must be succinct. The
paper discusses the underlying concepts and the formal methods for this
approach. Two examples are used to illustrate the methodology. The algorithm
for constructing interfaces that is proposed in the paper can be automated, and a
preliminary software system for its implementation has been developed.

1 Introduction

Human interaction with automation is so widespread that almost every aspect of our
lives involves computer systems, information systems, machines, and devices. These
machines are complex and are comprised of many states, events, parameters and
protocols. User interfaces for such machines always present a (highly) reduced
description of the underlying machine’s behavior.

In the majority of today’s automated systems, the human is the supervisor. Users
interact with systems or tools to achieve specified operational tasks (Parsuramann et
al., 2000) such as the execution of specific sequences of actions (e.g., a procedure for
setting up a medical radiation machine), monitoring a machine’s mode changes (e.g.,
an automatic landing of an aircraft), or preventing a machine from reaching specified
illegal states (e.g., tripping a power grid). To achieve these task specifications, the
user is provided with information about the behavior of the machine by means of an
interface and associated user-manuals and other training material.

In S. Koenig and R. Holte (Eds.), Abstraction, Reformulation, and Approximation (pp. 99-115).
2002: Springer-Verlag.

Naturally, for the user to be able to interact with the machine correctly and reliably
so as to achieve the task specification, the information provided to the user about the
machine must first and foremost be correct. Yet, while correct interaction can, in
principle, always be achieved by providing the user with the full detail of the machine
behavior, the amount of detail is generally unmanageable. Therefore, in practice, the
interface and related user manuals are always a reduced, or abstracted, description of
the machine’s behavior, and a major concern of designers of automated systems is to
make sure that these abstracted interfaces and manuals are adequate and correct.

Currently, the design decisions as to what information must be provided to the
user, both in the interface and in user-manuals, are made intuitively. Systematic
methodologies do not exist for these decisions and the resultant interfaces are
sometimes either overly complex or flawed, leading to what is commonly called
“automation surprises,” where operators (e.g., pilots, technicians, users) have
difficulty understanding the current status of an automatic system as well as the
consequences of their interaction with it (Woods, Sarter, and Billings, 1997).

In an earlier paper (Degani and Heymann, 2002), we discussed a methodology for
evaluating interfaces and user manuals. Given a description of the machine,
specifications of the user’s task, interface, and all relevant information the user has
about the machine, the procedure evaluates whether the interface and user manual
information are correct for the task. The proposed procedure can be automated and
applied to the verification of large and complex human-machine systems.

In the present paper we take an additional step and discuss a formal methodology
for automatic generation of correct and succinct interfaces and user manuals.

2 Formal Aspects of Human-automation Interaction

We focus primarily on the information content provided to the user about the behavior
of a system. This aspect of user interaction with machines can be described and
analyzed formally by considering the following four elements: (1) the machine-model,
(2) the operational tasks, (3) the machine’s interface with the user, and (4) the user’s
model of the machine, i.e., the information provided to the user about the machine
behavior (e.g., in the user manual).

2.1 Machine

The machines are modeled as finite state transition systems. A state represents a
mode, or configuration, of the machine. Transitions represent discrete-state (mode)
changes that occur in response to events that trigger them. Some of the transitions
occur only if the user triggers them, while other transitions occur automatically and
are triggered by the machine’s internal dynamics, or its external environment.

Figure. 1. Transmission system.

To illustrate a typical machine model, let us consider the machine of Figure 1,
which describes a simplified multi-mode three-speed transmission system proposed
for a certain vehicle. We use the convention that user-triggered transitions are
described by solid arrows, while automatic transitions are depicted by dashed arrows.
The transitions are labeled by symbols to indicate the (triggering) circumstances under
which the machine moves from state to state. The transmission has eight states, or
modes. These modes are grouped into three super-modes that represent manually
switchable gears (or speeds): low, medium and high. The states within each speed
represent internal torque-level modes. Thus there are torque modes 1, 2, 3L L L , in

the low speed super mode; there are torque modes 1,M 2,M in the medium speed

super mode; and modes 1, 2, 3,H H H in the high speed super mode. The
transmission shifts automatically between torque modes (based on torque, throttle,
and engine and road speeds). The automatic up-shifts (to higher torque modes) are
denoted by the event symbol δ and the automatic down-shifts by the symbolγ . The

(user operated) manual speed changes, achieved by pushing a lever up or down, are
denoted in the Figure by the event symbols β and ρ , respectively. Pushing the lever

up shifts to a higher speed and pushing down shifts to a lower speed. The transmission
is initialized in the low torque mode 1L of the low speed (as indicated in the Figure
by the free incoming arrow).

2.2 Task Specifications

The second element is the specification of the operational tasks the user is required to
perform while using the machine. For example, a common task specification in an

automated control system is that the user be able to determine unambiguously the
current and the subsequent mode of the machine.

In terms of a formal description, the task specification to which we confine our
attention in the present paper consists of a partition of the machine’s state-set into
disjoint clusters that we shall call specification classes (or modes) that the user is
required to track unambiguously. In other words, does the user know whether the
system is currently in, or is about to enter into, the super-mode High, Medium, or
Low? We note that the user is not required to track every internal state change of the
machine: for example, transitions between the modes 1L , 2L and 3L inside mode
Low.

2.3 Interface

The third element is the user interface. In practice, the interface consists of a control
unit through which the user enters commands (e.g., mode selections, parameter
changes) into the machine, as well as a display through which the machine presents
information to the user. Generally, the interface provides the user a simplified view of
the machine. Not all the events of the machine are annunciated to the user, and the
interface displays only partial information about the actual behavior of the machine.

Formally, the interface consists of a listing and description of the events accessible
to the user. These include, of course, all the user-triggered events (inputs to the
machine), but generally only a subset of the events that are associated with automatic
transitions. This is because some of the latter are not monitored at all, and others are
monitored only in groups. The interface annunciation tells the user only that one of
the events in the group took place, without specifying which.

To illustrate, let us return to the multi-mode transmission model of Figure 1. The
system in Figure 2 gives one possible user interface for this model. Here the
monitored events are only the ones triggered by the user. In the Figure 2 we have also
provided a description of the three display modes, as well as how the user would
observe the machine’s behavior when all automatic transitions are internalized and
unobserved. Note that the torque modes are completely suppressed from view.

Figure 2. Proposed interface and user model.

2.4 User model.

As mentioned earlier, the interface provides the user with a simplified view of the
machine, in that it displays only partially the machines internal behavior. The
description of the machine’s operation that is provided to the user is generally also an
abstracted simplification of the actual machine behavior. This description is usually
provided in terms of a user manual, training material, formal instruction, or any other
means of teaching the user; however, it is presented here as a formal model that we
refer to as the user model of the machine. By its very nature, the user-model is based
on the interface through which the user interacts with the machine, and thus relates to
the modes and events that are displayed there. Therefore, for analysis purposes the
interface events and modes are all explicitly referred to in the user-model, and in this
respect can be thought of as “embedded” in the user-model.

Let us examine the user interface displayed in Figure 2. This Figure depicts a
possible user-model associated with the interface that monitors only the user-triggered
events of the transmission system. This particular user-model has been obtained from
the machine model of Figure 1 by suppressing (internalizing) the events that are not
monitored, and grouping the states as suggested by the specification. It can be seen
that the manual shifts from MEDIUM up to HIGH or down to LOW, as well as the down-
shift from HIGH to MEDIUM, are always completely predictable. However, the up-shift
from the LOW gear depends on the current torque mode. Note that the up-shifts from
L1 and L2 switch the transmission to MEDIUM speed, while the up-shift from L3
switches the transmission to the HIGH speed. Therefore, from the suggested interface
of Figure 2, it cannot be predicted whether the up-shift will lead the transmission from
LOW to MEDIUM, or to HIGH gear. We must conclude that the user-model is inadequate
for the task.

An alternate user-model for the transmission model that may remedy the above
mentioned problem is presented in Figure 3. This user-model describes an interface
that also monitors the occurrences of two specific automatic transitions, in addition to
all user-actuated events. This user-model, in particular, is aimed at enabling the
operator to determine whether the transmission is in a display-mode LOW-1 (where an
up-shift is supposed to lead to MEDIUM speed), or in the display-mode LOW-2 (where
an up-shift leads to HIGH).

Figure 3. Alternate interface and user model.

However, although the alternative user model of Figure 3 appears to have solved
the problem, a formal verification employing the methodology recently proposed by
Degani and Heymann (2000; 2002) shows that this user-model is also inadequate.

It is of course possible to try out other interfaces and user-models and then employ
the verification procedure to determine their correctness. However, such an approach
is not likely to be very fruitful: It may take considerable effort to develop and verify
one design after the other, with no guarantee of success. Furthermore, even when a
correct interface is found, there is no assurance that it is the simplest.

3 Machine Model Reduction

As mentioned earlier, one possible choice of user model is to take the full machine
model as user model and the complete machine event set as the set of monitored
events. If the machine model is deterministic (as we assume throughout this paper),
this will insure that there will never be any problem in predicting the next state of the
machine. But the operator would be required to track every state and every event in
the machine – a formidable and impractical job. In the simple example of Figure 1,
the machine has 8 states, 18 transitions and 4 distinct transition labels. But this is a
tiny number when compared to “industrial size” situations.

In the present section we shall describe a procedure for the generation of all
optimal user models and interfaces for a given machine model and task specification.
In particular, we shall consider the problem of constructing, for a given machine and
task specification, the set of all best possible user-models and event abstractions that
satisfy the specification. Here, by best user models and interfaces we mean the ones
that cannot be further reduced! Since, as we shall see, these user models (and
associated event abstractions) are generally not unique, we cannot speak of user-
model “synthesis,” but rather, of machine model reduction. We shall show how all
“smallest” user models and associated interfaces can be derived.

3.1 Compatible state sets and covers

We assume that the machine-model is given as a state machine and that the task
specification is given as a partition of the state-set into disjoint classes of states that
we refer to as specification classes (Heymann and Degani, 2002). Thus, each state of
the machine model belongs to a unique specification class. (In Figure 1 which depicts
the multi-mode three speed transmission, the specification classes consist of the three
speeds; Low, Medium and High. Each state, or mode, belongs to exactly one speed.)

Let us consider a machine-model given as a state-machine, and let the task
specification consist of a partition of the machine-model’s state set Q into disjoint

specification classes lQQ ,...,1 (as described, for example, in Figure 1 where 3=l).

The user model must enable the user to operate the system correctly with respect to
the specification classes. That is, it must enable the user to track the specification
classes but not necessarily individual states. Thus, the user does not need to be able to

distinguish (by means of the user model and interface) between two states p and q
of the same specification class, if for the purpose of tracking the specification classes
unambiguously it is sufficient for the user to know that the machine visited either p
or q . More explicitly, the user does not need to be able to distinguish between p
and q if the specification class visited following any user-machine interaction

starting in state p , is the same as the specification class visited following the same

user-machine interaction starting at state q . This leads to the following definition:

Two states, p and q , are specification equivalent (or compatible), if given that the

machine is presently in either state p or q (of the same specification class), the
specification classes to be visited under future inputs will be the same. Stated more
formally, we have

Definition: Two states p and q are specification compatible if and only if the
following two conditions both hold:

1. The states p and q belong to the same specification class,

2. If 'p and 'q are states such that there exists an even-string 1... ns σ σ= for

which 'sp p → and 'sq q → are both defined, then 'p and 'q
belong to the same specification class.

It is clear that if the only concern is to track the specification classes, two
specification compatible states need not be distinguished in the user model. We may
also conclude immediately that any set of states is specification compatible if all the
pairs of states within that set are specification compatible.

Thus, if an efficient procedure is found for computation of all specification
compatible pairs, the set of all compatible state sets will easily computed. Indeed, the
compatible triples will be obtained as the state triples, all of whose pairs are
compatible; compatible quadruples as the quadruples all of whose triples are
compatible, and so on.

Next, we have the following:

Definition: A set C of compatible sets of states is called a cover of the state set of
the machine-model, if every state of the machine-model is contained in one or
more elements of C.

Since a set that consists of a single state is (trivially) compatible, it follows that
every state is included in at least one compatible set, so that the set of all compatibles
is always a cover.

Definition: A compatible set of states is called a maximal compatible set, if it is
not a proper subset of another compatible set; that is, if it is not contained in a
bigger compatible set of states.

Since sets that consist of a single state are compatible, it is clear that every state is
contained in at least one maximal compatible set. It follows that the set of maximal
compatibles is a cover.

Definition: A cover C of compatibles is called a minimal cover, if no proper

subset of C is a cover.

Of particular interest to us will be the set of all minimal covers formed from the set
of maximal compatibles. That is, we shall be interested in minimal covers whose
component elements are maximal compatible sets. In general, the number of such
minimal covers can be greater than one.

We shall see below that minimal covers by maximal compatibles constitute the
foundation of the model reduction and interface generation procedure. However, we
shall first show the set of compatibles is computed.

3.2 Generation of compatible pairs

As stated above, the computation of compatible sets hinges on the construction of
the set of all compatible pairs. An efficient iterative algorithm for construction of
compatible state pairs is based on the use of merger tables (see e.g., Paull and Ungar
1959, and Kohavi 1978, where related model reduction problems are discussed).

Figure 4. Table of all pairs

A merger table is a table of cells representing distinct state pairs. An initial table
for the eight states of our transmission example is shown in Figure 4. Each cell of the
table corresponds to a pair of distinct states, and each pair of distinct states appears in
the table exactly once.

Next, we have the following observations that can be easily derived from the
definition of compatible pairs:

A state pair),(qp of the same specification class is compatible if and only if

for every event symbol σ such that 'pp → σ
and 'qq → σ

are both

defined, it is true that either '' qp = , or the pair)','(qp is compatible.

We shall use the above characterization of compatible sets to obtain a
complementary characterization of all pairs that are not compatible (or incompatible).
It will then be convenient for us to compute recursively the set of all incompatible
pairs. The set of compatible pairs will then consist of all state pairs that are not found
to be incompatible. Based on the above characterization of compatible pairs, the
characterization of incompatible pairs is as follows:

A state pair),(qp is incompatible if and only if either p and q belong to

distinct specification classes, or there exists an event symbol σ for which

'pp → σ
and 'qq → σ

are both defined, and the state pair)','(qp is

incompatible.

Using the above observations regarding compatible and incompatible pairs, the
determination as to whether a state pair is compatible or incompatible is computed
iteratively as follows.

1. For each state pair),(qp that can be determined as incompatible in the first

step based on the above characterization (i.e., if p and q belong to distinct

specification classes), we mark the corresponding cell F (for false). For all
other state pairs, we write in their cells their associated transition pairs that
consist of all distinct state pairs)','(qp for which there exists an event

symbol σ , such that the transitions 'pp → σ
and 'qq → σ

are both
defined.

Figure 5. Resolution table (initial).

For illustration, the initial resolution table for the transmission model of Figure 1 is
presented in Figure 5. Notice that each transition pair in the table has been subscripted
with the associated event label. This subscription is not essential to the algorithm and
is for the reader’s convenience only. Notice further that the cell (H1,H3) is empty
because it is neither incompatible nor has associated transition pairs. Next, the table is
resolved iteratively.

2. At each step of the iteration every state pair that has not yet been determined
as F is updated as follows: If the cell of a state pair (,)p q includes a

transition pair)','(qp whose cell has already been determined as F

(incompatible), then the cell of),(qp is also denoted F. Otherwise, the cell

of),(qp is modified as follows: Each transition pair)','(qp in the cell of

),(qp is replaced by all the transition pairs that appear in the cell of

)','(qp .

3. If in a given iteration step no new incompatible state pairs are found (i.e., no
new F designations are added to the table), then all the state pairs that are not
designated as F, are given the designation T (for true). This completes the
table resolution procedure and the determination of all compatible pairs.

To illustrate the iteration steps of the procedure, let us return to our transmission
example. The table of Figure 6 is obtained from that of Figure 5 as follows: First we
replace the transition pairs in the cell (L1,L2) by those in the cell (L2,L3). The cells
(L1,L3) and (L2,L3) are denoted with F because their cells include incompatible pairs.
The remaining undecided state pairs (those that have not yet been given the value F)
are modified according to the algorithmic procedure. For example, in the cell
(M1,M2) we list the transition pairs from the table of Figure 5 of the cell (H1,H2) that
consists of (H2,H3).

Figure 6. Resolution table (after first iteration).

In the next resolution step the table of Figure 7 is obtained. Here the cell (L1,L2) is
marked F upon substituting the value F of the cell (M1,H1,) which is incompatible.
The remaining undecided cells are modified as specified by the algorithm. In fact,
notice that no further change needs to be made to the table.

Figure 7. Resolution table (after second iteration).

In the next step, no further incompatible pairs are created and the table remains
identical to that of Figure 7. At this point, all the remaining undecided cells are
marked T a shown in the table of Figure 8, concluding the table resolution.

Figure 8. Resolution table (completed).

Thus, as seen in Figure 8, for the example of Figure 1, the set of compatible pairs
consists of (M1,M2), (H1,H2), (H1,H3), and (H2,H3). Notice that the states L1, L2
and L3 do not appear in any compatible pairs and therefore the singleton sets (L1),
(L2) and (L3) are clearly maximal compatibles.

3.3 Generation of the set of maximal compatibles

The procedure for generation of maximal compatibles consists of first
systematically creating all compatible sets. We begin by computing all compatible
triples, then compatible quadruples, then quintuples, and so on. A compatible triple is
a triple all three of whose pairs are compatible; a compatible quadruple is a quadruple
all of whose pairs are compatible, which is equivalent to a quadruple whose four
triples are all compatible, and so on. Once all compatibles are listed, the maximal ones
can easily be computed by deleting from the list all compatibles that are contained
within larger ones.

For the transmission example, the maximal compatibles are easily found to be the
sets (L1), (L2), (L3), (M1,M2) and (H1,H2,H3). It is also not difficult to see that, in
this case, they partition the state set into disjoint subsets and hence form the (unique)
minimal cover by maximal compatibles.

3.4 Generation of reduced models

The generation of a reduced model that can serve as a correct user model for the
given machine and specification is based on an abstraction of the machine-model.
This reduced model is obtained by clustering the states into sets that consist of a
minimal cover by maximal compatibles.

To this end, let us assume that a minimum cover consists of a given set of maximal

compatibles lCC ,...,1 , where the set iC , li ,...,1= , consists of states },...,{
1 inii qq

of the machine model. The maximal compatibles lCC ,...,1 form the state set of the

reduced model. Here it is noteworthy that a minimal cover by maximal compatibles
need not be a partition of the state set into disjoint subsets. Specifically, while each
state of the machine model must be contained within some maximal compatible set, it
may well be the case that a state is contained in more than one maximal compatible of
the minimal cover. That is, these sets may (sometimes) have overlaps.

Next, we turn to computing the transitions in the reduced model. An event symbol

σ is said to be active at iC , if there exists an outgoing transition in the machine

model labeled by σ , at some state iCq ∈ . That is, there exists a state 'q in the

machine model, such that 'qq → σ
is defined. We denote by)(σiC the set of all

states iCq ∈ for which an outgoing transition labeled by σ exists.

Next, we define)(σiS to be the set of all states 'q of the machine model, such

that 'qq → σ
for some)(σiCq ∈ . Thus, the set)(σiS is the set of all states of

the machine model that can be reached from states in iC through the event σ . It

readily follows from the definition of compatible sets that there exists one or more

element of lCC ,...,1 which contain)(σiS . In the reduced model we then create a

transition labeled by σ going from the state iC to the state jC , where jC is the

maximal compatible that contains)(σiS . If more than one such set jC exists, we

can choose any one of these (and to avoid non-determinism in the reduced model we
choose exactly one).

To summarize, the reduced model associated with the minimal cover lCC ,...,1 is

obtained as follows. The state set of the reduced model consists of elements

lpp ,...,1 (think of ip as associated with iC). There is a transition labeled σ from

ip to jp if jC is the (chosen) set that contains)(σjS . The reduced model is

initialized at state kp if the machine model is initialized at a state in kC (where, as

before, there may be more than one possible selection if the initialization state is

contained in more that one of the iC). The reduced model obtained for the

transmission example is shown in Figure 9.

Figure 9. The reduced user model.

3.5 Event Abstraction

The final step of the model reduction procedure consists of the abstraction of the
reduced model’s event set (when possible). Specifically, we ask which events can be
internalized (i.e., need not be monitored) and which events can be clustered into

groups so that instead of being monitored individually, they be monitored collectively.
That is, the user will be informed that some events in the group occurred, but will not
be informed which events of the group actually took place.

To this end the following abstraction rules apply:

1. An event can be internalized if it occurs in the reduced model only in self-
loops.

1.2. A set of events can be grouped together, if every state transition that can be
triggered by any event of the group can also be triggered by any other event
of the group.

In the transmission example no event abstractions are possible. An illustration of
event abstractions is provided in the example of the next section.

4 An Abstract Machine Example

In the above discussion on machine model reduction, we used an example of a
transmission system. In this final section, we shall apply the reduction algorithm to a
somewhat more complex machine. The machine in Figure 10 has nine states and 25
transitions. There are three specification classes: the gray region that includes states 7,
8, and 9; the wave-like region that harbors state 4 and 6; and the rest of the states of
the machine (1, 2, 3, and 5). The task specification is similar to our previous one: the
user has to track the machine along these three regions (or modes). Specifically, the
user must be able to identify the current mode of the machine and anticipate the next
mode of the machine as a consequence of his or her interactions.

Figure 10. An abstract machine model.

Figure 11. Reduced model.

We perform the reduction procedure along the steps described in the previous
section. First the table is constructed, and then the iterations are performed. The
procedure terminates with only one minimal cover of maximal compatibles that
consists of four state sets: (1,3,5) (2,3,5) (4,6) (7,8) and (9). Notice however, that this
example illustrates a case in which the cover is not a partition of the state set. Indeed,
the state 3 is included in two distinct maximal compatibles.

We then arbitrarily assign names to these sets, and call them A, B, C, D, and E,
respectively. The reduced machine is obtained upon computation of the abstracted
transitions as explained earlier (see Figure 11). It can be seen in this figure that the
event ρ occurs only in the self-loop in state A, and that the events γ and δ are

interchangeable. Thus, ρ can be internalized and the events γ and δ can be

grouped. The result of this event abstraction is presented in the final reduced (user)
model of Figure 12, which contains only 5 states and 16 transitions.

Figure 12. Reduced model (with masking and internalization of events .

5 Conclusions

In this paper we discussed several formal aspects of the design of human-
automation interaction. Specifically, we focused attention on the construction of user
models and interfaces. Two objectives guided us in our design and analysis: (1) that
the interfaces and user models be correct; and (2), that they be as simple as possible.
We described a systematic procedure for generating such correct and succinct user-
models and interfaces.

The proposed reduction procedure generates interfaces that are not necessarily
intuitive or easily correlated with the underlying system (e.g., see the reduced user
model of Figure 12). Nevertheless, these user models are correct and efficient. They
are also, irreducible.

The proposed procedure may lead to more than one possible minimal (irreducible)
interface and user-model. That is, it may find several minimal covers (of maximal
compatibles). These minimal covers are all correct and efficient reductions of the
same machine and task-specification. Naturally, the decision as to which one is
selected constitutes a human-factors and/or engineering design decision. It affords the
designer with several candidate interfaces and allows designers the freedom to choose
the most appropriate one, given other design considerations such as Graphical User
Interface considerations, users’ preferences, and ease of implementation.

References

Degani, A. and Heymann, M., Meyer, G., and Shafto, M. (2000). Some Formal
Aspects of Human-Automation Interaction, NASA Technical Memorandum 209600,
NASA Ames Research Center, Moffett Field, CA.

Degani, A. and Heymann, M. (2002). Formal Verification Of Human-Automation
Interaction. Human Factors.

Heymann M., and Degani A. (2002). On abstractions and simplifications in the
design of human-automation interfaces. NASA Technical Memorandum, NASA
Ames Research Center, Moffett Field, CA.

Kohavi, Z. (1978). Switching and Finite Automata Theory. New York: McGraw-
Hill.

Parasuraman, R., Sheridan, T.B., and Wickens, C.D. (2000). A model for the types
and levels of human interaction with automation. IEEE Transaction on Systems, Man,
and Cybernetics – Part A: Systems and Humans, 30(3), 286-297.

Paull, M.C. and Unger, S.H. (1959). Minimizing the number of states in
incompletely specified sequential switching functions. Institute of Radio Engineers
Transactions on Electronic Computers, 356-367.

Woods, D., Sarter, N., and Billings, C. (1997). Automation surprises. In G.
Salvendy (Ed.), Handbook of human factors and ergonomics (pp. 1926-1943). New
York: John Wiley.

